FERTILIZACIÓN DE FRUTALES

Buena variedad, buen pie, buen marco y buena fertilización hacen una excelente plantación.

JOSÉ MANUEL TABUENCA MARTÍNEZ Servicio de Estudios y Coordinación de Programas

Fertilizar correctamente una plantación frutal es un reto que debe afrontarse año tras año y, en ocasiones, el empresario agrario tiene dudas sobre su forma de actuar en este aspecto.

De entre los métodos que se siguen para establecer las «fórmulas» anuales de fertilización se describirá, en este artículo, el debido al equipo de fruticultura de la Station Fèdérale de Recherches Agronomiques de CHANGINS, en NYON (Suiza).

El método parte de establecer unas formulaciones de base, obtenidas según la mayor o menor fertilidad del suelo, formulaciones que se modulan, al alza o a la baja, en función de la respuesta vegetativa de la plantación frutal. Su uso resulta muy sencillo, como se verá al final del artículo, en que se desarrolla un ejemplo.

Aun cuando el seguimiento de la evolución de la nutrición vegetal a través de análisis foliar es hoy ya una realidad que permite prescindir de apreciaciones subjetivas sobre el «vigor», «lignificación», etc., este método simplifica al agricultor la toma de decisiones sobre el abonado. Por ello, aun con las citadas limitaciones técnicas del sistema, su aplicación puede ser de interés, y por eso se ofrece en este artículo.

1. PLANTACIONES REGADAS A PIE

1.A. Abonado de preplantación

1.A.1. Materia orgánica

TABLA 1

Calificación de un suelo en función de su contenido en materia orgánica, y según su textura

TEXTURA					
	Ligera	Media	Pesada		
Bajo Normal	< del 0,8 % 1,2 a 1,5 %	< del 1,2 % 1,8 a 2,3 %	< del 2,0 % 2,5 a 3 %		
Alto	Más de 2,0 %	Más de 3,0 %	Más de 3,5 %		

En preplantación se añadirá materia orgánica solamente cuando la calificación por el suelo sea de «BAJO», que será, desgraciadamente, el caso más general de nuestras tierras.

Obsérvese que si se pretende aumentar en un 0,1 % de contenido en materia orgánica de un perfil de suelo—de una densidad aparente de 1,5 kg/dm³— de (v. gr.) 80 cm, y se dispone de un producto con (v.gr.) el 80 % de riqueza en materia orgánica, serán precisos 12 000 kg por hectárea de esa sustancia.

Transcurridos muy pocos días tras la adición de la aportación orgánica, los resultados analíticos no nos ofrecerán el incremento del 0,1 % que aportamos, sino otro bastante menor, debido a la muy rápida degradación de la materia orgánica por la acción de los componentes químicos del suelo; entre ellos, y particularmente, el carbonato cálcico.

Una buena fertilización contribuye a una buena cosecha.

1.A.2. Abonado fosfo-potásico-magnésico

TABLA 2

ABONADO DE PREPLANTACIÓN (kilogramo de P₂O₅, K₂O y Mg por hectárea)

	FOSF	ÓRICO	POTASA		MAGNESIO			
	Si Carb	on. Calc.	K ₂ O Mg		Mg ^(I)	/).		
	< 10 %	> 10 %	Lig.	Med.	Pes.	Lig.	Med.	Pes.
Muy bajo (2)	400	600	600	900	1 200	80	100	120
Bajo	250	400	400	600	800	60	80	100
Normal	100	200	200	300	400	40	60	80
Alto	0	0	0	0	0	0	0	0
Muy alto	0	0	0	0	0	0	0	0

⁽¹⁾ Si se quieren obtener los kilogramos de MgO, multiplicar por 1,66.

(2) Estas calificaciones se utilizan en los cuadros 2 a 6, inclusive.

1.A.3. Abonado nitrogenado en preplantación

En preplantación no es preciso hacer aportaciones de abonado nitrogenado si se hicieron las correcciones correspondientes de la materia orgánica del suelo.

Si no se hicieron, se puede aportar a cada arbolito, en la zona de sombra, cantidades de nitrato amónico, sulfato amónico, o urea, que no excedan de 15 g de nitrógeno/árbol en cada aplicación, con cada tres aplicaciones en campaña.

1.B. Abonado de mantenimiento anual

1.B.1.1. Abonado P₂O₅-K₂O-MgO para plantaciones adultas

Para obtenerlo se manejarán los datos «BASE» que se obtienen de la tabla 3, afinándolos con los criterios de la tabla 4.

TABLA 3

Datos base para el abonado de una hectárea de frutal expresados en kilogramo de elementos fertilizantes

Contenidos del suelo en ese elemento fertilizante	Fosfórico P ₂ O ₅	Potasa K ₂ O	Magnesio Mg ⁽¹⁾
Muy bajo ⁽²⁾	80-140	180-300	40-60
Bajo	60-105	135-225	30-45
Normal	40-70	80-150	20-30(3)
Alto	20-40	45-80	10-30(3)
Muy alto	0	0	0-30(3)

⁽¹⁾ Si se desean obtener los kilogramos en forma de MgO, hay que multiplicar po 1,66.

(2) Estas calificaciones aparecen en los cuadros 2 a 6, inclusive.

Criterios de ponderación y afinado de los datos base de la tabla 3

TABLA 4

	Valores de ponderación					
Perfil explorado	> 80 CM	-3	40-80 CM	0	< 40 CM	+3
Vigor del patrón	Grande	-3	Medio	0	Bajo	+3
% materia orgánica(1)	Alto	-2	Normal	0	Bajo	+2
% piedras	< 25 %	-2	25-50 %	0	> 50 %	+2

⁽⁴⁾ Ver clasificación en tabla 1.

Sumar los valores de la ponderación. Si el valor obtenido es:

- -Entre -10 y -4: Usar el valor más bajo obtenido en la tabla 3.
- -Entre -3 y +3: Usar un valor intermedio de dicha tabla.
- -Entre +4 y +10: Usar el valor más alto de la tabla 3.

1.B.1.2. Abonado fosfo-potásico-magnésico anual para plantaciones jóvenes

En plantaciones jóvenes se actuará así:

- · Primer año:
 - -Si se abonó en preplantación: no abonar.
 - —Si no se abonó en preplantación: usar 1/5 de la dosis de 1.B.1.1.
- Segundo año: 1/3 de la dosis de 1.B.1.1.
- Tercer año: 2/3 de la dosis de 1.B.1.1.
- Cuarto año: dosis obtenida en 1.B.1.1.

⁽³⁾ Si la riqueza de ese suelo en K₂O es muy alta, obligadamente hay que aportar, al menos, 30 kg de magnesio, por antagonismos entre K₂O y MgO.

⁽⁴⁾ En especies de hueso incrementar la potasa de base en 30 kg/ha.

I.B.2.1. Abonado nitrogenado en plantaciones adultas

TABLA 5

Criterios y valores de ponderación para la racionalización del abonado nitrogenado en fruticultura considerando las siguientes observaciones:

Planta			Valores de poi	nderación		
Vigor de cultivo Lignificación Form. yemas flor Cosecha anterior Enferm. fisiológ. Vigor patrón	alto tardía poca poca si alto	-4 -3 -3 -3 -2 -1	normal normal normal no no	0 0 0 0 0	bajo prec. mucha mucha	+4 +3 +3 +3
Terreno: Perfil explorado Volumen piedras Material orgánica (1)	> 80 cr < 25 % alto		40-80 cm 25-50 % normal	0 0 0	< 40 cm > 50 % bajo	

⁽¹³ Ver clasificación en la tabla 1.

Sumar los valores de ponderación. Si la suma es:

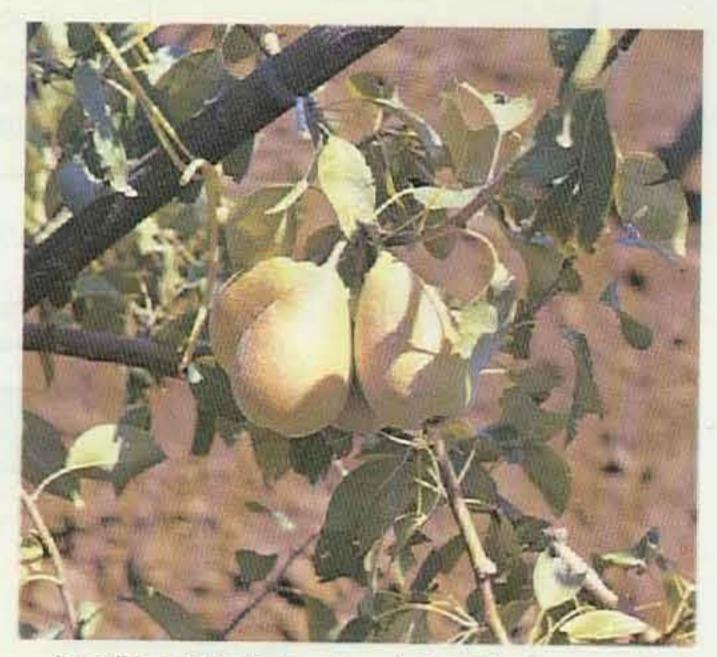
De -20 a -12 aportar 0-25 kg n/ha

De -11 a -4 aportar 25-50 kg n/ha

De -3 a +3 aportar 50-80 kg n/ha

De +4 a +8 aportar 80-110 kg n/ha

De +9 a +12 aportar 110-130 kg n/ha


De +13 a +16 aportar 130-160 kg n/ha

De +17 a +19 aportar 160-200 kg n/ha

1.B.2.2. Abonado nitrogenado en plantaciones jóvenes

En plantaciones jóvenes se actuará así:

Primer año	10-20 kg n/ha
Segundo año	
Tercer año	20-45 kg n/ha
Cuarto año	

La calidad de los frutos depende también de una racional fertilización.

2. APÉNDICE

CUADRO 1

Análisis de nitrógeno en suelos (Kjeldäl)

Valoración de la fertilidad	ppm de nitrógeno
Muy bajo	< 500
Bajo	600 a 1000
Normal	1000 a 2000
Alto	2000 a 3000
Muy alto	> 3000

CUADRO 2 Análisis de fósforo en suelos (Olsen)

Valoración de la fertilidad	ppm de fósforo
Muy bajo	< 5
Bajo	5 a 15
Normal	15 a 30
Alto	30 a 40
Muy alto	> 40

CUADRO 3

Análisis de potasio en suelos (Método del acetato amónico a pH = 7)

	PPM EN TEXTURAS				
Valoración de la fertilidad	Ligeras	Medianas	Fuertes		
Muy bajo	< 50	< 100	< 125		
Bajo	50-83	100-150	125-190		
Normal	83-124	150-190	190-240		
Alto	124-174	190-250	240-300		
Muy alto	> 174	> 250	> 300		

CUADRO 4

Análisis de potasio en suelos (Método del acetato amónico a pH = 4,65)

	PPM EN TEXTURAS			
Valoración de la fertilidad	Ligeras	Medianas	Fuertes	
Muy bajo	< 15	< 40	< 805	
Bajo	15-30	40-80	80-160	
Normal	30-60	80-160	160-240	
Alto	60-100	160-240	240-400	
Muy alto	> 100	> 240	> 400	

Análisis de Magnesio en suelos (Método del acetato amónico según CROS, S.A.)

CUADRO 5

Valoración de la fertilidad	ppm de magnesio	
Muy bajo	< 75	
Bajo	75-300	
Normal	300-600	
Alto	600-900	
Muy alto	> 900	

Análisis de magnesio en suelos (Método del acetato amónico según Laboratorio de Cabrils)

CUADRO 6

			PPM EN	TEXTURAS	S			
Valoración de la fertilidad	Ligeras	Semiligeras	Media.	Semifuertes	Fuertes			
Muy bajo	< 70	< 100	< 170	< 220	< 280			
Bajo	70-80	100-120	170-190	230-260	280-320			
Normal	80-90	120-150	190-230	260-300	320-370			
Alto	90-110	150-170	230-260	300-340	370-420			
Muy alto	> 110	> 170	> 260	> 340	> 420			

3. EJEMPLO

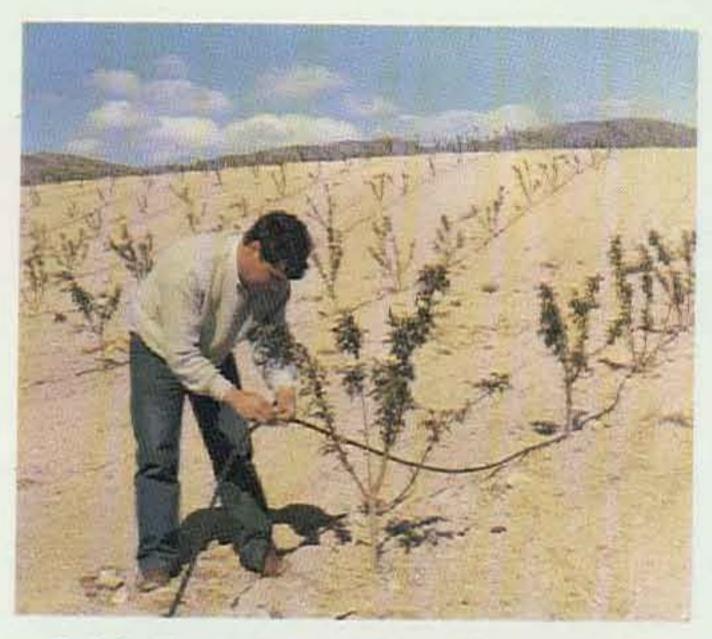
Objetivo: Fertilizar una plantación de manzano Golden de 9 años sobre pie E.M.-IX

Con nuestro Boletín de análisis de suelos vamos al apéndice de la publicación y vemos que los criterios de valoración que le corresponden son:

Mat. orgánica = 1 % (tabla 1)	Bajo
P ₂ O ₅ (método Olsen) = 10 ppm (cuadro 2)	Bajo
K ₂ O (acetato amon. en pH 7) = 120 ppm (cuadro 3)	Bajo
MgO (acetato amon. «Cabrils» = 240 ppm	
(cuadro 6)	.Alto

FERTILIZACIÓN FOSFOPOTÁSICA

Consultamos la tabla 3 y obtenemos:


P ₂ O	60-105 u./ha
K ₂ O	135-225 u./ha .
MgO	17-50 u./ha expresadas en forma de MgO

Modulamos con la tabla 4:

Perfil explorado	70 cm	0
Vigor del patrón	Pequeño	
% materia orgánica	Baja	+2
% piedras	15 %	-2
	Total	+3

Aplicamos los criterios y, por tanto, usaremos el valor intermedio de los obtenidos con la tabla 3, a saber:

$$P_2O_5 = 80$$
 $K_2O = 80$ $MgO = 30$

En la fertilización en riego localizado hay que prestar una especial atención a las obturaciones de los goteros.

FERTILIZACIÓN NITROGENADA

Vamos a «1.B.2.1. Abonado nitrogenado ...» y, concretamente, a la tabla 5.

Planta:

Vigor del cultivo	Normal	0
Lignificación	Normal	.0
Formación yemas flor	Mucha	
Cosecha anterior	Mucha	+3
Enfermedades fisiológicas	No	0
Vigor del patrón	Poco	+1

Terreno:

Perfil explorado	70 cm	. 0
Volumen piedras	15 %	
Materia orgánica		+3
	Total	+9

Aplicamos los criterios del final de la tabla 5 y obtenemos:

N = 110-130 kg n/ha

Aplicaremos, por tanto, unas 120 U. de N.